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Local preconditioning 
of the Euler equations 

and its numerical applications 
Final technical report to AFOSR 

regarding AFOSR Grant No. F49620-92-J-0158-DEF 

Bram van Leer and Philip L. Roe 
W. M. Keck Laboratory for Computational Fluid Dynamics 

Department of Aerospace Engineering 
The University of Michigan 

1 General information 

This is the final technical report on research carried out under Air Force Grant No. 
F49620-92-J-0158-DEF, in the period April 15, 1992 - April 14, 1995. The project ti- 
tle was "Local preconditioning of the Euler equations and its numerical applications." 
It was awarded for research exploiting the recent discovery of local preconditioning 
matrices that minimize the spread among the wave speeds admitted by the Euler 
equations for any Mach number. Closely related to this research is the work carried 
out under Augmentation Grant No. F49620-93-1-0417; its project title is "Efficient ex- 
plicit integration schemes for the hyperbolized Navier-Stokes equations." This project 
considers the application of local preconditioning to a stiff hyperbolic system describ- 
ing viscous conducting flow with a finite relaxation time. Over the past year part of 
the effort in this subject was diverted to the main subject in order to help solve the 
problem of the stagnation-point instability (see below), which was halting progress 
in both principal and augmentation projects. Where relevant, research findings from 
the augmentation project are included below. 

2 Research in the past year 

Since the previous report research under the principal grant has focussed on the 
problem of instability in stagnation regions, experienced in the use of a variety of 
inviscid flow codes: conservative and nonconservative, cell-average and cell-vertex 
based. 

In July-August '95 a concentrated effort (not funded by AFOSR) of some develop- 
ers and users of local preconditioning at ICASE/NASA Langley Research Center led 
to a modification of the Van Leer preconditioning that makes this matrix insensitive 
to the flow direction near stagnation points, where the flow direction is ill-determined. 
The modified matrix immediately cured the stability and accuracy problems for the 



cell-vertex, fluctuation-split, nonconservative code of Lisa Mesaros (doctoral candi- 
date, U. of MI); the conservative version of her code was not helped very much by the 
modification. This suggested that there was yet another cause of the stagnation-point 
difficulties. 

Subsequently, David Darmofal (NSF/AFOSR post-doc, U., of MI), in collabora- 
tion with Peter Schmid (U. of WA), studied the eigenvector structure of the matrices 
arising in the preconditioned Euler equations. He concluded that the main problem 
for vanishing flow speed or Mach number M is the large deviation from orthogonality 
of the eigenvectors: certain eigenvectors become parallel for M —> 0. When marching 
to a steady solution this causes a strong initial transient that may lead to instability. 

Based on this analysis a modification was proposed for preconditioning matrices 
of the Van Leer-Turkel family; the modified matrices were successfully implemented 
in an unstructured conservative code. This marks the first time that the stability 
problem has been removed in the use of a conservative code. The modification consists 
of downward limiting of the Mach-number value used in the (1,1) matrix element 
(~ M2), e.g. by a minimum value that is a small fraction of the far-field Mach number. 
In previous "fixes" the Mach number was limited everywhere in the preconditioning 
matrix and its products with other matrices; apparently this does not affect the 
numerical fluxes in a desirable way. 

We expect the new modified preconditioner to solve the stagnation problems of 
other conservative preconditioned codes; this is currently under investigation in other 
projects. 

The application of the Van Leer preconditioning to the design of multi-stage 
marching scheme with optimal high-frequency damping, and the use of such schemes 
in a multi-grid relaxation framework, are the subject of a thesis by John Lynn, de- 
fended in our Department on May 17, 1995. He has shown that the double benefit 
of preconditioning, known from one-dimensional calculations by Tai (Ph.D., U. of 
MI, 1990), persists in two dimensions. The preconditioning already speeds up single- 
grid relaxation; the guaranteed high-frequency damping of the optimized multi-stage 
schemes provides an extra speed-up of a factor 2-3, and additional robustness. 

The thesis includes tables of recommended multi-stage coefficients, and also dis- 
cusses the extensions to Navier-Stokes operators and to unstructured grids. In the 
numerical examples Lynn avoided the stagnation-point instability by avoiding flow 
problems including stagnation points. 

The above research has been reported at the 12th AIAA Conference on Compu- 
tational Fluid Dynamics, June 19 - 22, San Diego, CA. Two conference papers were 
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prepared under the principal AFOSR grant; these are listed below. jr. 

1. B. van Leer, L. Mesaros, C.-H. Tai and E. Türkei, "Local preconditioning in a  "" w 

stagnation point," AIAA Paper 95-1654CP, 1995. __ 
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2. J. F. Lynn and B. van Leer, "A semi-coarsened multi-grid solver for the Eu- 
ler and Navier-Stokes equations with local precnditioning," AIAA Paper 95- 
1667CP, 1995. 

The remainder of the research was dedicated to further development of the pre- 
conditioning matrix for the Navier-Stokes equations so as to make it useful for very 
low cell Reynolds-numbers. Preconditioning in the presence of a one-equation turbu- 
lence model (Spalart-Allmaras) has also been investigated. Neither subject has been 
rounded off. 

3    Review of results from entire contract period 

During the contract period of three years major progress was made in the under- 
standing, application and improvement of local preconditioning for the Euler and 
Navier-Stokes equations. One of the foremost results is the demonstration that the 
use of our Euler preconditioner in two space dimension yields a double benefit in a 
multi-grid strategy: a single-grid speed-up factor, owing to removal of system stiffness, 
and an independent multi-grid speed-up factor, owing to guaranteed high-frequency 
damping. These results are contained in the Ph.D. thesis of John Lynn, whose doc- 
toral work was supported by the contract over the last 18 months. It is worth noticing 
that among researchers that use local preconditioning for the sake of multi-grid re- 
laxation, almost all select point-Jacobi preconditioning, which only gives the second 

bewnefit. 
Basic understanding of the potential possibilities present in the family of optimal 

Euler preconditioners was obtained. It turned out that, in spite of the overwhelming 
number of free parameters, much of the parameter space is irrelevant. The symmetric 
Van Leer-Lee-Roe 2 parameter preconditioning matrix, on which this contract was 
based, turns out to be the most desirable form under all circumstances. For very 
low Mach number, it offers the flexibility to have the condition number increase by 
a factor 2 in order to reduce flow-angle sensitivity. The matrix has also caused a 
break-through in the formulation of genuinely multi-dimensional fluctuation-splitting 
schemes, after it was discovered that it yields the proper decoupling of the acoustic 
from the convective components present in the Euler equations. 

Robustness of Euler calculations in the presence of preconditioning has been an 
issue during the entire contract period, but it appears that the worst problems are 
over, now that the stagnation-point instability has been properly understood. This 
instability is caused in part by the lack of orthogonality of certain matrix eigenvectors, 
resulting in a transient up-swinging of numerical errors. 

The Euler preconditioning has been embedded in a Navier-Stokes preconditioning 
through the use of a simple Jacobi block to account for the dissipative terms. There is 
still a robustness issue in the limit of vanishing cell Reynolds-number. The inclusion 
of a convective turbulence-transport equation appears to be easily accounted for in the 



preconditioning matrix, in the same way as is done for the extra continuity equations 
needed in describing multi-species reacting flow. 

All results not included in Lynn's thesis will be presented in the doctoral thesis 
of Dohyung Lee, which is expected to be defended in the Winter Term of 1996. 

When reviewing progress in CFD over the past three years, it is observed that 
the introduction of the Van Leer-Lee-Roe preconditioning matrix at the 10th AIAA 
CFD Conference in June 1991 set a new CFD trend. Local preconditioning matrices 
for the low-speed flow regime had been introduced by Türkei from 1984 onwards, 
and were used extensively by Merkle et al. at Pennsylvania State University, but 
their use did not spread further. At present there is a rapidly growing appreciation of 
local preconditioning, both in the USA and Europe (Netherlands, Belgium, Germany, 
UK, France), probably because the locality of this convergence-acceleration technique 
combines well with parallel computer architectures. 

4    Future research 

To make our type of local preconditioning a robust technique, as robust as the tradi- 
tional point-Jacobi preconditioning, and suited for non-expert users, some work still 
needs to be done: 

a. Testing the robustness of the stagnation-point modifications under a wide range 
of circumstances, i. e. Mach numbers, flow angles, cell aspect-ratios and cell 
Reynolds-numbers; 

b. Optimizing the smoothing of matrix elements in the sonic-point singulatity; 

c. Overcoming the loss of robustness for very low cell Reynolds numbers. 

Among new uses of local preconditioning awaiting exploration are: 

• 

• 

Local preconditioning for atmospheric problems, eliminating stiffness due to 
acoustic and gravitational waves; 

Preconditioning for magneto-hydrodynamics, eliminating stiffness due to magneto- 
acousic and Alfven waves; 

• Local preconditioning expanded hydrodynamic equation systems derived from 
the collisional Boltzmann equation (a continuation of the work under the current 
augmentation grant). This has applications in upper-atmosphere and plasma 
flows as well as micro-manufacturing and solid-state modeling. 

We plan to submit a new research proposal addressing these topics in the near future. 
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numerical support regarding the effectiveness   and v vanishes (but not its derivatives). The 
of these modifications is presented. Euler equations then read 

1    Introduction 

Local preconditioning can be used to make the 
time-dependent Euler equations more suited 
to the numerical computation of steady solu- 
tions. In the following analysis precondition- 
ing is accomplished by multiplying the spa- 
tial differential operator by a locally evaluated 
matrix. First, let us introduce some notation. 

The two-dimensional Euler equations will 
be written as 

dU      A,TT,dU     n/TT,dU     n 
w + A{U)- + B{U)- = 0,      (1) 

where the state variables are defined differen- 
tially: 

dU = (— ,du,dv,dS) ; 
pa (2) 

a denotes sound speed, S entropy. These vari- 
ables have the property of symmetrizing the 
Euler equations: 

A(U)   = 

■B(U)   = 

/ u a 0 0 \ 
a u 0 0 
0 0 u 0 

V 0 0 0 u / 

/ v a 0 0 \ 
a v 0 0 
0 0 v 0 

V 0 0 0 t; / 

(3) 

(4) 

Much of the analysis can be done assum- 
ing that the fluid moves in the positive x- 
direction, so that u equals the full flow speed q, 

/Ml     0     0   \ 
dU 
«    +  a 

1 M 
0     0 

0 
M 

0 
0 

dU 
dx 

V o   o 0    M ) 

/ 0   0   1 o\ 
+   a 0 0   0 

1 0   0 
0 
0 

dU 
dy 

= 0, (5) 

\ o o o o / 
where M is the Mach number. 

The preconditioned Euler equations read 

where P{U) is a positive definite matrix. If P 
is symmetric, so is P_1, and the system 

™-£+««o£+«< 0   (7) 

is symmetric, just as the original system.  If 
P is not symmetric, it is desirable that the 
preconditioned system be symmetrizable; th 
puts certain constraints on the elements of P 

[!]■ 
In the course of our research on local pre- 

conditioning of the Euler equations the follow- 
ing computational benefits have been identi- 
fied. 

1. Local preconditioning can be designed to 
remove the stiffness of the system of equa- 
tions caused by the range of the charac- 
teristic speeds, thus improving the con- 
vergence rate of any discrete marching 
scheme [2]. 



P(U) = 

I  Ml     _M 

ß    ß^ l 

\ 

0 
0 

0 
0 

where ß = \/l — M2. Use of this matrix re- 
duces the condition number of the character- 
istic speeds from (M + l)/min(l - M,M) to 
l/ß. For an appreciation of the stability prob- 
lem near a stagnation point we must obtain 
the form of the matrix valid for any flow an- 
gle <£, i. e. 

2. It then makes the system of equations be-   flow (M < 1) takes the form 
have more like a scalar equation, which is 
advantageous in designing and applying 
additional convergence-acceleration tech- 
niques [3]. 

3. It generates spatial discretizations that 
may retain their accuracy at low Mach 
number, in contrast to standard dis- 
cretizations [4, 5, 6]. 

4. It can be designed to decouple the acous- 
tic equations from the convective equa- 
tions, allowing genuinely multidimen- 
sional discretizations [1] 

These desirable properties come at the ex- 
pense of robustness. Current research focuses 
on making the various preconditioned Euler 
discretizations that have been developed more 
reliable near flow singularities, such as sonic 
and stagnation points. In this report we de- 
scribe the loss of stability in computing stag- 
nating flow with the symmetric Van Leer-Lee- 
Roe preconditioning [2], and how to overcome 
it by modifying the matrix for low Mach num- 
bers. 

0 0 \ 
0 0 

ß o 
0 1/ 

(8) 

P*(U) = R?(U)P(U)Rt(U)        (9) 

with 

MV) = 

( 1 0 0 0 \ 
0 cos<^ sin<^ 0 
0 — sin<^ cos <f> 0 

\o 0 0 1 I 

(10) 

2    Sensitivity to flow angle 

With the choice of flow variables (2) and the 
flow aligned with the x-axis, the Van Leer- 
Lee-Roe preconditioning matrix for subsonic 

this yields Equation (11). It is seen that 
this matrix remains sensitive to the flow an- 
gle when the Mach number decreases toward 
zero, because its inner elements (2,2), (2,3), 
(3,2) and (3,3), which depend on <f>, remain 
0(1). In this case numerical perturbations 
to u and v that are small in absolute value 
may not be small when compared to the values 
of u and v, causing 0(1) variations in <j> and 
the four matrix elements. This sensitivity can 
be traced back to the fact that the elements 
(2,2) and (3,3) of P are not equal. It is be- 
lieved to contribute to the numerical instabil- 
ity near a stagnation point, often experienced 



P*{U) = 

V 

Ml -fcos^ -fsin<£ 0> 

_Mß
cos4> (l + l)cos^ + /3sin^ (l + l-/3)sin^cos^ 0 

-|W (i + l-/*)"M«»' (l + l)sin^ + /W<> 0 
% o o i; 

(11) 

with conservative upwind Euler schemes that 
include the above matrix. In such schemes 
the artificial-dissipation matrices [2] used in 
the streamwise and normal fluxes are 

P-^PAI     P-X\PB\, (12) 

rather than \A\ and |B|, as in the original 
upwind schemes. In the update the spatial 
residual in each cell is multiplied by the cell- 
centered value of P#, creating products 

(P^)center(^,    )f»ce (13) 

that may vary erratically near a stagnation 
point and deviate appreciably from the val- 
ues elsewhere in smooth flow, which should be 
close to the identity matrix. In a study by D. 
Lee [7] a uniform slow flow perturbed by ro- 
tating the velocity in one cell by 90° became 
unstable when advanced in time by an explicit 
first-order upwind scheme preconditioned as 
above    The instability could be forestalled, 
but not avoided, by taking smaller time steps. 
A similar behavior was found when simulating 
an isolated stagnation region.   Andrew God- 
frey reports [8] that implicit time integration 
can suppress the instability if the grid used is 

not too fine. 
Besides  flow-angle  sensitivity there  is  a 

more obvious problem: the vanishing of sev- 

eral elements of the matrix (8) near, a stag- 
nation point, especially the (1,1) element. In 
practice it has been found necessary to bound 
the value of M away from zero in these el 
ments, e.g. replace it by 

M = min(0.lMoo,0.1). (14) 

For conservative schemes, which include the 
inverse of P in the artificial-viscosity coeffi- 
cients (12), such a procedure clearly makes 
sense [2]; less obvious is it that nonconser- 
vative schemes also increase in robustness by 
this measure. It appears that use of the ac- 
tual value of M makes the pressure correc- 
tion allowed by the preconditioned equations 
so small that the flow does not properly tur- 
in the stagnation region. 

Returning to the subject of flow-angle sen- 
sitiviy, an indication that this indeed con- 
tributes to stagnation-region instability was 
found by Tai [9], who obtained stability and 
convergence by using a nonconservative ver- 
sion of the preconditioned schemes, in which 
the product (13) is omitted.    Furthermore 
preconditioned schemes based on Türkei s [10j 
matrix, whether or not in conservation form, 
do not exhibit the instability.   This can be 
readily understood from the structure of this 
matrix; for streamwise x-axis and sufficiently 



small Mach number it reduces to 

/ 

PT(U) = 

\ 

M2    0 0 0 \ 
-M   1 0 0 

0     0 1 0 
0     0 0 1 / 

(15) 

which is seen to be lower triangular. The ele- 
ments (2,2) and (3,3) of this matrix are equal; 
in consequence, its version for arbitrary flow 
angle, 

PTHU) = 

(      M2 0 0 0 \ 
-Mcos<f> 1 0 0 
-Msin<£ 0 1 0 

V        0 0 0 1/ 

(16) 

is well behaved for M —► 0. It is possible 
to extend the matrix (15) so as to yield the 
minimum possible spread of the characteristic 
speeds throughout the subsonic domain, with- 
out giving up its lower-triangular structure. 
The resulting matrix is 

PT(U) = 

(  *f 0   0 0\ 
-^ 10 0 

0 0/3 0 
\    0 0   0 1/ 

(17) 

While it does not suffer from flow-angle sen- 
sitivity, the preconditioning matrix (15) has 
another problem: it lies at the limit of ad- 
missibility. Türkei [10] found that the pre- 
conditioned system of equations is no longer 
symmetrizable, implying, among other things, 
that it no longer has an entropy condition [11] 
distinguishing between physical and nonphys- 
ical admissible solutions. An arbitrarily small 
perturbation of the matrix, though, can make 

the system symmetrizable again. Indeed, it 
has been pointed out by Türkei that the ma- 
trix (15) itself does not work in practice, but 
the perturbed matrix 

PT<t>(U) = 

( (1 + e)M2 0   0   0 \ 
-M 10   0 

0 0   10 
\        0 0   0   1/ 

(18) 

with c > 0 for symmetrizability, does speed 
up numerical convergence. 

It is not a priori clear that, in the limit 
of M —► 0, the matrix (15) is the only opti- 
mal preconditioner with the property that its 
(2,2) and (3,3) element are equal. It would be 
preferable if an optimal matrix existed closer 
to Van Leer's, i. e. more nearly symmetric. To 
find out about this, the best one can do is to 
examine all possible matrices. This is actually 
done in the next section. 

3    Analysis in the incom- 
pressible limit 

Since the stability problem with the symmet- 
ric preconditioner occurs only for small M, it 
is advantageous to base the further analysis on 
the incompressible Euler equations, at least as 
a start. This means the reference Mach num- 
ber, e. g. MQO, is assumed to be small; the flow 
velocity itself is now regarded to be 0(1). 

The Euler equations for incompressible flow 
are made hyperbolic through "artificial com- 
pressibility" [12], implemented by adding a 
time derivative of pressure to the elliptic con- 



tinuity equation: 

pä2 +   UX   +   Vy = 0, 

Ut + UUX + VUy + = o, 
p 

Px 
vt + uvx + Wy -\ =   0, 

(19) 

(20) 

(21) 

rapidly with m. Thus, 6, c, / and F can all 
be 0(1), but b and c must be equal or close 
to equal, while / and F must be opposite or 
close to opposite. For the present purpose it 
therefore suffices to assume 

b   =   c; 

F  =   -/; 

(26) 

(27) 
where ä is now a constant artificial speed of 
sound, and p is also a constant; the entropy 
equation drops out. Using otherwise the same 
variables and coordinates as before, the equa- 
tions can be written as 

8U 
dt £   <-> 

/ 0 1    0 \ 
-fa     1 m    0 

^ 0 0    m j 
0 0   1 

+   ä |   0 0   0  I ^ = 0,    (23) 
1 0   0 ) dy 

du 

where m = u/ä is the artificial Mach number, 
of magnitude 0(1). Next we precondition this 
system with the most general matrix possible: 

it is instructive to carry b and c along as sepa- 
rate parameters as long as possible, since this 
allows us to link the Van Leer and Türkei m 
trices. 

3.1    Optimal asymmetric matri- 
ces 

Next we study the characteristic speeds of the 
preconditioned equations, i. e. the propaga- 
tion speeds of the plane-wave solutions admit- 
ted by these equations. If we denote the prop 
agation direction by the angle 9, the speeds 
are the eigenvalues of the matrix 

a   D   E 
P(U) = |  d   b   F 

e    f    c 

P(Äcosd + Bsine). (? 

(24) 

note that a is a free parameter and has noth- 
ing to do with the speed of sound. For an 
arbitrary flow angle this matrix transforms 
into Pi(U), given in Equation (25). Consider 
first the 2 x 2 block of elements (2,2), (2,3), 
(3,2), (3,3). In order to avoid too strong a de- 
pendence on the flow angle near a stagnation 
point, i. e. for m —» 0, both b — c and f + F 
must either equal zero or vanish sufficiently 

Using the coefficient matrices from (23) and 
the general preconditioning (24), the eigen- 
value equation becomes (29). or 

with 

- A3 + K2\
2 - Kx\ + Ko = 0,        (30; 

= [d + D + 6m + cm] cos 9 

+ (e + £)sin0, (31) 

= [(d + D + bm)cm -ab + dD 

- eFm- fEm- fFm2} cos2 9 

6 



f a D cos <f> - E sin <j> D sin <f> + E cos <f> ^ 

d cos 4> — e sin 4>   b cos2 <j> + c sin2 (f> - (f + F) sin <f> cos </>   (6 - c) sin 0 cos <f> - f sin2 <£ + F cos2 0 
^ d sin <£ + e sin <j>   (b - c) sin <f> cos 0 + / cos2 </> - F sin2 <f>   b sin2 <£ + c cos2 <f> + (f + F) sin <f> cos <£ , 

(25) 

det 
( DcosO + Es'mO — A      (a + Z)m)cos8        EmcosO + as'mQ    \ 

bcos9 + Fsin9       (d + bm) cos 9 — A      Fm cos 0 + d sin 0 
^      /cosö + csinö (e + /m)cos#      cmcosö + esinö — A y 

= 0. (29) 

+   (—ac+ eE) sin2 9 it does  not bode well for symmetrizability 

+     [(/ + F)a + (e + E)bm + (E - fm)d tnat both Pairs (e>E) and (/i ^) must be 

+   (e -Fm)D] sin 6 cos 0, (32)  «Symmetric. Using both (27) and (36), the 
remaining conditions reduce to 

Äo   =   -m cos ödet P. (33) 
<f + £> + 6m = m(l-c) (37) 

If P were an optimal preconditioner, all wave 
speeds would turn out equal, i. e., the acoustic   from K2, 
waves would propagate at the flow speed in all 
directions. This suggests the following target (d + D + bm)cm -ab + dD 
equation for the A's: +(e + fm)2 - e2 = -m2, (38) 

(mcos0-A)(A2-m2) = O,        (34) ac + e2 = m2 (39) 

and 
(D - d)(e + Fm) = 0 (40) or 

- A3 + A2m cos 6 + Am2 - m3 cos 9 = 0. (35)   from Kx, and 

Comparing the target equation to the gen- (ab — dD)c + af2 + be2 

eral equation leads to 6 constraints (two from _M 4. D)ef = m2 (41) 
K2, three from K\ and one from K0) on the 
9 parameters a,b,c,d,e,D,E.  One therefore   from KQ. 

would hope to find a one-parameter family of       Considering Eq.   (40) it appears we have 
matrices satisfying the additional constraints   two choices: 
(26) and (27). e +/m = 0, (42) 

Starting with the sinö-term in K2, we see   whjcn aiso means 
that 

e + £ = 0; (36) E + Fm = 0, (43) 



or 
d = D. (44) 

Pursuing first the choice e + fm = 0 we find 
that Eqs. (37,38,39,41), while up to cubic in 
the unknown parameters, allow elimination of 
a, b, d and D. The result is a relation between 
c and /, 

(c2 + /2-l)(c2 + /2-c) = 0, (45) 

meaning either 

f2 = 1 - c2 (46) 

or 
/2 = C(l - c). (47) 

The first choice, Eq. (46), suggests interpret- 
ing c and / as cos^ and sin^, where tf; is 
an arbitrary angle; it leads to the following 
two-parameter matrix (or its transposed) sat- 
isfying all previous constraints except (26): 

P{U) = (48) 

cm2 (1 — b)m    ±\/l — c2m ^ 
—cm b 

Going back to Eq. (40), we still have to fol- 
low its second branch Eq. (44), which makes 
the pair (d, D) symmetric. Again the alge- 
bra becomes complicated, forcing us to insert 
b = c right away. When eliminating a and d 
from the remaining equations it turns out that 
c also drops out, yielding 

(e + /m)2 = --m2, (50) 

=F\/1 - c2m   ±y/l - c2 c / 

which can not be satisfied by real e and /. 
Apparently, the equality of d and D exclude 
the equality of b and c. 

Upon inspecting the yield of the above anal- 
ysis, viz. matrices (48) and (49), it appears 
that equality of b and c, with c always less than 
1, makes these matrices even more skewed 
than Turkel's matrix, and therefore further 
away from producing a symmetrizable precon- 
ditioned system. The extra freedom offered by 
the parameters e and /, hitherto not included 
in any analysis, does not lead to more prefer- 
able matrices, and we shall henceforth assume 
these to be zero. For future reference we re- 
peat the matrix (48), inserting c = 1, whii 
eliminates e and /: 

This general formula includes the Türkei ma- 
trix (b = c = 1) and the Van Leer matrix 
(6 = 2, c = 1); we shall discuss its properties 
further below. 

The second choice, Eq. (47), complicates 
the algebra; to simplify the analysis we have 
to implement the constraint (26) right away. 
With b = c we obtain the one-parameter ma- 
trix (49). In this matrix we may replace c 
by |(1 + cos 4>), whereupon / becomes | sini/'. 
Turkel's matrix again is obtained for c = 1. 

P(U) = 
m2 (1 -b)m   0 \ 
—m b         0 

0 0         1 ) 
(51) 

this is the incompressible version of the fol- 
lowing matrix valid for subsonic compressible 
flow: 

/   Ml 

P(U) 

f    (l-6)f   0 
■f          b          ° 
0            0/3 

0\ 
0 
0 

0            0          0 11 

(52) 



P(U) = 
(c+i-1) m' 

—cm 

K  =F^c(l - c)m    ±y/c(l -c) 

(1 — c)m     ±Jc(l—c)m^ 

Tyjc(l - c) (49) 

One choice of b(M) that links the Türkei ma- 
trix for M = 0 to the Van Leer matrix for 
greater subsonic values of M is 

The family of matrices of the form 

6(M) = i + i-/r, (53) 
P(U) = 

/ a d 0 0 \ 
d b 0 0 
0 0 c 0 

V 0 0 0 1 / 

(56) 

where r is some positive power, e. g. r = 2. 

3.2    Sub-optimal symmetric ma- 
trices 

We are now left with two possible strategies 
of fighting the stagnation-point instability: 

1. use a matrix of the form (52), with b(M) 
varying with the Mach number from 

to 

6(0) = 1 

6(1) = 2. 

(54) 

(55) 

2. develop a one-parameter family of sub- 
optimal symmetric matrices satisfying 
the same conditions (54) and (55). 

has been analyzed in great detail by Wen- 
Tzong Lee[4]. From this analysis we conclude 
that the following variation on the Van Leer 
matrix (8) will offer sufficient freedom: 

P(U) = 

(57) 
With this choice of preconditioning, the plane- 
wave speeds \(9) follow from the equation 

(C2Mcos 9-X){C3M cos 0-A) x 

{A2 + AM(C4-C2)cos0 (58) 

-CiC4M
2[(l - M2) cos2 6 + sin2 9]} = 0; 

for 9 = 0 we have in particular: 

0 0   \ 
C\ ß + C2 0 0 

0 0 C4ß 0 
V    o 0 0 c3) 

(dßM + X)(C2M - \){CZM - A) x 

(A2 - C4ßM) = 0. (59) 
In this section we shall pursue the second pos- 
sibility. Preserving symmetry, even if it means 
giving up optimality, is valuable because it is 
cruicial in coding update schemes based on It is seen that the coefficients C\, C2, C3 and 
multidimensional fluctuation splitting [13]; see C4 scale, respectively, the backward acous- 
further Section 4 on numerical results. tic speed,   the shear-convection speed,   the 



entropy-convection speed and the forward 
acoustic speed. The acoustic wave front, 
which is the envelope of the graph of the 
acoustic plane waves, is an ellipse with equa- 
tion 

'x-\{CA-Cx)ßM\ + y 
J(Ci + c4)     ) ^\y/üjr<M 

= l. 

(60) 
In order to make the elements b and c of P 
equal for M —► 0, we must satisfy 

Ci(M) 

ß 
+ C2(M) = C4(M)ß       (61) 

for M —♦ 0, or simply 

Ci(0) + C2(0) = C4(0). (62) 

This means that both the backward acoustic 
speed and the shear-convection speed must be 
reduced in magnitude with respect to the for- 
ward acoustic speed. The best condition num- 
ber results when the backward acoustic and 
shear speeds are equal in magnitude, l. e. 

Ci(0) = C2(0) = ic4(0). (63) 

In order to keep the normalization that the 
largest characteristic speed equals the flow 
speed, we take C4(0) to be 1. which makes 
both Ci(0) and C2 equal to |. Since the three 
coefficients all should tend to 1 for the larger 
subsonic values of M, there is no reason to let 
C4 differ from 1 for any Mach number, nor C\ 
from C2. Our final choice therefore is 

d(M)   =   C2(M) = a(M),       (64) 

"(0)   =    i, (65) 

"(1)   =   1, (66) 
C4{M)   =   1. (67) 

One question remains: should the entropy- 
convection speed be re-scaled, or may it re- 
main equal to the flow speed? There is some 
evidence that the entropy speed better equal 
the shear speed: in one of our airfoil calcula- 
tions an instabilty encountered at the far-field 
boundary could be suppressed by lowering tb 
entropy speed to the shear-speed value. A 
possible explanation is that for the precondi- 
tioned system of equations the quantity con- 
vected besides entropy is not shear strength 
but actually is the total enthalpy for an isen- 
tropic process. If entropy and isentropic to- 
tal enthalpy are convected at different speeds 
their values may get out of sync, feeding an 
instability. If this explanation is correct, an- 
other way of preventing the instability is to 
add a multiple of the entropy-convection equa- 
tion to the other convection equation, so that 
a convection equation results for the full t« 
tal enthalpy, not subject to a speed restric- 
tion. However this may be, for the time be- 
ing we shall take the enthalpy- and entropy- 
convection speeds equal, i. e., 

C3{M) = a(M). (68) 

symmetric preconditioner Our sub-optimal 
thus becomes 

,M2 

l 

P(U) = 

a- 

a ß 
0 
0 

«tt+O 
0 
0 

0 

0 

ß 

0 \ 

0 
0 
a } 

(69) 
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For our numerical experiments we chose 

a   =   I,   0<M<i (70) 

-»(--i) 

a continuously difFerentiable function which 
uses a cubic to switch between the two plateau 
values. 

4    Numerical results 

We experimented with both preconditioners, 
the asymmetric matrix (52) and the symmet- 
ric matrix (69); the results can be summarized 
as follows. 

1. Both new asymmetric and symmetric 
preconditioners made it possible to con- 
verge with a conservative upwind code 
(structured grid, cell-average update) to 
steady solutions for low-speed flow cases 
in which the original Van Leer-Lee-Roe 
preconditioner (8) would lead to instabil- 
ity or failure to converge. The symmet- 
ric preconditioner was the most robust of 
the two, allowing the use of lower Mach 
numbers and finer grids, and giving faster 
convergence. 

2. Even the better preconditioner of the 
two can hardly be called robust: it still 
needed special handling in order to avoid 

blow-up for an impulsively started flow 
field, in addition to the mandatory down- 
ward limiting of the M-values in P [2]. 

Surprisingly, the symmetric precondi- 
tioner greatly improved a nonconserva- 
tive flow code, namely, the unstructured 
cell-vertex code developed by Mesaros 
[13] on the basis of fluctuation-splitting 
ideas. The equations used are those 
found after preconditioning the Euler 
equations with the Van Leer-Lee-Roe 
preconditioning, which neatly separates 
the acoustic equations (a pair of time- 
dependent Cauchy-Riemann equations) 
from the two convection equations (one 
for the isentropic total enthalpy and one 
for entropy). The convection eqations 
are updated by a state-of-the-art multi- 
dimensional upwind advection scheme, 
the acoustic equations are by a cell-vertex 
distribution scheme similar to that of Ni 
[14]. The procedure previously failed to 
converge for airfoil flows at lower inflow 
Mach-numbers, with the strongest inde- 
terminacy occurring in the leading-edge 
stagnation region. The sub-optimal sym- 
metric preconditioner decouples the equa- 
tions just as the optimal one, and made it 
possible to achieve accurate converged re- 
sults for arbitrarily low M^ on a fine grid, 
without any further special measures. 

Figure 2 shows Mach contours of the 
steady solutions obtained for flow over a 
NACA 0012 at zero angle of attack, for 
inflow Mach numbers of 0.1 (top) and 
0.01 (bottom). The grid has 131 nodes on 

11 



the body, strongly clustered at the lead- 
ing edge. The two solutions are practi- 
cally indistinguishable and, as shown in 
Figure 1, have identical convergence his- 
tories, except for a scale difference of a 
factor 100 between the residuals. The so- 
lutions are of high quality, as evidenced 
by the low drag coefficient of 0.0002 ob- 
tained in both cases. 

4. When changing to a conservative up- 
date scheme Mesaros' code lost robust- 
ness for low-speed flows, showing prob- 
lems similar to those experienced with 
the cell-average-based finite-volume code. 
In particular, the code would not toler- 
ate impulsive-start conditions; the non- 
conservative version of the code had to 
be used to get through the initial tran- 
sients. Alternatively, increasing the ar- 
tificial dissipation in the acoustic distri- 
bution scheme could be used to stabilize 
the scheme initially. It was further ob- 
served that the lower bound on M in the 
elements of P had to be raised in the con- 
servative code. 

5. Another conservative cell-vertex code 
[15], though, seemed to draw no benefit 
at all from the modified preconditioner: 
it performed as well without as with the 
modification. This code was developed by 
D. Darmofal for the study of Euler pre- 
conditioners, in particular, the effect of a 
preconditioner on the eigenvector struc- 
ture of the equations. The scheme imple- 
mented was Barth's [16], which uses cell- 

vertex values to define Riemann prob- 
lems at the faces of co-volumes. Dar- 
mofal found that the problems of insta- 
bility or nonconvergence near a stagna- 
tion point are solely caused by certain 
acoustic eigenvectors becoming parallel 
for M —► 0, and that bounding M away 
from zero in the (1,1) element of P solves 
these problems. So far the following com- 
binations of preconditioners and numeri- 
cal flux functions have been tested: 

• Türkei preconditioning with scalar 
artificial viscosity; 

• Türkei preconditioning with matrix 
viscosity (upwind differencing); 

• Van    Leer    preconditioning    with 
scalar artificial viscosity. 

Although it is still to early to draw a firm 
conclusion, it seems that at least this par- 
ticular kind of cell-vertex code can easily 
be made robust, and that any modifica- 
tion of the preconditioning should be mt 
tivated by orthogonalizing eigenvectors, 
rather than relaxing the condition num- 
ber of eigenvalues. 

5    Conclusions 

In the present study we deveoped a modified 
preconditioner that reduces the sensitivity of 
the preconditioned flow equations to the flow 
angle in a stagnation region. This dramati- 
cally improves the stability and convergence of 
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at least one flow code, a nonconservative cell- 
vertex code described elsewhere in this volume 
[13]. The effect on certain conservative codes 
is not impressive, while yet another conser- 
vative code, also described elsewhere in this 
volume [15], does not seem to need the modi- 
fication at all. All preconditioned need some 
downward limiting of the value of the Mach 
number; its beneficial effect, according to Dar- 
mofal and Schmid [15], is mostly to prevent 
the eigenvectors of certain acoustic waves to 
become parallel. 
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Figure 2: Mach contours for flow over a NACA 
0012 at zero angle of attack; for a descrip- 
tion of code and grid see the main text. Top: 

Figure 1:   Residual histories for the calcula-   Af«, =0.1, bottom: M«, = 0.01. 
tions of the steady solutions shown in Figure 
2. 
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Abstract 
An optimization formulation is described for multi- 

stage schemes based on the hi-hi high-frequency content 
in the Fourier footprint of the preconditioned spatial op- 
erator. These coefficients, when used in conjunction with 
semi-coarsened multigrid and local preconditioning pro- 
vide a fast and robust method for achieving steady-state 
Euler solutions. Multigrid speed-ups of 3-4 times are ob- 
served when using local preconditioning as compared to 
local time-stepping. The extension to Navier-Stokes op- 
erators is also described. 

1    Introduction 
Explicit marching schemes are commonly used as 

multigrid relaxation schemes when solving the Euler and 
Navier-Stokes equations. These schemes must feature ef- 
fective high-frequency damping in order to be suited for 
use in multigrid marching. Multi-stage schemes provide 
the flexibility to achieve the desired smoothing proper- 
ties. True multigrid convergence rates can only result with 
multi-stage relaxation schemes that are able to effectively 
damp high-frequency errors for all flow conditions. 

In [1] we presented an optimization scheme to obtain 
optimal sequences of time-step values (i.e., a multi-stage 
scheme) for discretizations of the full Euler or Navier- 
Stokes spatial operator. Though this method was a step 
forward from earlier formulations, which based the de- 
sign of the multi-stage schemes on either the scalar one- 
dimensional [2, 3] or two-dimensional [4] convection equa- 
tion, the schemes obtained were not truly independent of 
flow conditions, such as Mach number and flow angle. 

In [5] Allmaras pointed out that with semi-coarsening 
[6. 7], the high-frequency domain over which the multi- 
stage scheme must be a good damper of errors is reduced 
to "hi-hi" combinations (in 2-dimensions).   This makes 

'Doctoral Candidate, Aerospace Engineering and Scientific Com- 
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'Professor, Associate Fellow AIAA 
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it easier to design optimal multi-stage schemes that are 
largely independent of flow conditions. In [8] we have 
obtained such multi-stage schemes and have shown that 
these multi-stage schemes, in conjunction with the semi- 
coarsened multigrid algorithm and local preconditioning 
[9], provide a fast and robust method for achieving steady- 
state Euler solutions. 

In this paper we will present more detailed results, 
including solutions to model problems, to further substan- 
tiate this claim. Our research has also shown that Navier- 
Stokes operators require a different optimization formula- 
tion for the design of multi-stage schemes. This issue will 
also be addressed in this paper. 

2    Semi-coarsening 

When multi-dimensional convection is aligned with 
one of the grid directions, single-grid relaxation schemes 
cannot damp high-frequency errors propagating in the 
normal direction that are coupled to low frequency er- 
rors in the convection direction. This is known as the 
single-grid alignment problem. 

Semi-coarsening is a method meant to resolve this 
grid-alignment problem in a multigrid context. Mulder 
[6, 7] has developed an efficient solver for the steady 2-D 
Euler equations based on semi-coarsening. The method 
employs semi-coarsening in two directions simultaneously 
(for a two-dimensional problem). 

The usual restriction and prolongation operators 
have to be modified to handle input from more than one 
grid. If one grid needs data from two finer grids, the 
two sets of data obtained by the restriction from each 
finer grid are averaged. For prolongation, the correction 
is computed with respect to the latest fine-grid solution 

As pointed out earlier, with semi-coarsening, the 
high-frequency domain over which the multi-stage scheme 
must be a good damper of errors is reduced to "hi-hi" com- 
binations, making it easier to design multi-stage schemes 
that are largely independent of flow conditions. 

1 
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Fourier Footprint of hi-hi domain. 
Modified Roe Scheme with M = 0.1, * = 0°, v = 1. 
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Figure I: Fourier footprint of the first-order upwind ap- 
proximation of the spatial Euler operator (modified Roe 
scheme) with the preconditioner of Van Leer et al. [9], for 
M = 0.1, and flow angle 4> = 0°. Footprint corresponds 
to hi-hi domain \ßx\, \ßy\ S (f , *")• The time-step chosen 
corresponds to a Courant-number value of 1. 
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Local preconditioning matrices attempt to remove 
the spread among characteristic speeds as much as pos- 
sible. The matrix derived by Van Leer et al. [9] 
achieves what can be shown to be the optimal con- 
dition number for the characteristic speeds, namely, 
1/v/l - min(M2, A/-2), where M is the local Mach num- 
ber. This is a major improvement over the condi- 
tion number before preconditioning, which equals (A/ + 
l)/min(M,|Af- 1|). 

The effect of local preconditioning on the discretiza- 
tions of the spatial Euler operator is a strong concentra- 
tion of the pattern of eigenvalues in the complex plane. 
This makes it possible to design multi-stage schemes that 
systematically damp most high-frequency waves admit- 
ted by a particular discrete operator [1]. The resulting 
schemes are not only preferable .as solvers in a multi-grid 
strategy, they are also superior single-grid schemes, as the 
preconditioning itself already accelerates the convergence 
to a steady solution, and the high-frequency damping pro- 
vides robustness. 

The local preconditioning matrix described in [9] was 
derived based on the partial differential equations that 
make up the Euler equations. On analysis, it was realized 
that multigrid damping could be improved by modifying 
the matrix such that the high-frequency modes of all the 
waves overlap more completely. This modified Euler ma- 
trix is described in [10]. Figures 1 and 2 are presented 
as examples of the hi-hi frequency content in the Fourier 
footprints obtained with this modified preconditioner. 

Figure 2: Fourier footprint of the K = 1/3 upwind ap- 
proximation of the spatial Euler operator with the pre- 
conditioner of Van Leer et al. [9], for Af = 0.1, and flow 
angle <j> — 45°. Footprint corresponds to hi-hi domain 
|/?r|, \ßy\ € (f, *). The time-step chosen corresponds to a 
Courant-number value of 1. 

4    Optimization procedure for Eu- 
ler Operators 
The procedure for optimizing high-frequency damp- 

ing aims at minimizing the maximum of the modulus of 
the scheme's amplification factor over a given set of high- 
frequency eigenvalues. The input parameters are the time- 
step values Af(i), k = l,..,m, of an m-stage algorithm. 
When updating the solution of 

Ut = Res(U) [1) 

from time level tn to fn+1 = tn + Af, the method takes 
the form 

Um    =    Un, (2) 

(jit)    _    [/(0) + A^)fles ([/(*"1)), fc=l,..,m,(3) 

yn + l     _    ry(m) (4) 

with Af = Af(m). According to linear theory, one step 
with the full scheme multiplies each eigenvector of the 
operator Res(U), with associated eigenvalue A, by a factor 
of the form m 

(5) P{z)= 1 + z + X/*2*' 
fc=2 

where 
z = AAf (6) 

generally is complex. The m - 1 coefficients ck relate to 
the time-step ratios ak = Af(t)/^; the actual time 9teP 
Af is the mth parameter. 
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Figure 3: High-frequency Fourier footprint of the precon- 
ditioned first-order upwind Euler operator (modified Roe 
scheme with preconditioner of Van Leer et al. plotted on 
top of the level lines of the amplification factor of the as- 
sociated optimal 4-stage scheme. Flow angle 0°, M — 0.9. 
Result of optimization over entire high-frequency domain 
minus wedge filter (cf. [1]). 

Given a discrete Euler operator, the optimization 
procedure starts out by computing, for a fixed combina- 
tion of M and <p (= flow angle), a discrete set of eigenval- 
ues for wave-number pairs (ßz,ßy) in the high-frequency 
range, i.e. 

\0z\e (|.»)   and  |/?,| €(£,*)• (7) 

Assuming a set of starting values for the m-stage 
scheme, for instance Tai's values [3], the value of \P(z)\ 
is computed for all eigenvalues previously obtained, 
and its maximum is found. This is our functional 
cr(At(1\ .., At(m); M, <J>); it must be minimized by varying 
the m parameters. 

It is not a priori clear that the At(4) will be in- 
sensitive to values of M and <p. If, as in [1], we have 
to consider the whole high-frequency domain, i.e. \ßx\ € 
(§,JT) and/or \0y\ € (f, *) , two problems arise: the 
alignment problem mentioned earlier and a singularity 
problem for M — 1. Figure 3 gives evidence of both 
problems. There are lo-hi entropy/shear modes extending 
all the way into the origin, and hi-lo acoustic error modes 
at some distance to the origin that vanish as \J\ - M2. 
These two effects go away if we restrict ourselves to the 
high-frequency range (7) appropriate for semi-coarsening. 

The optimal (in the L^ sense) m-stage scheme for 
a given discrete Euler operator may hence be obtained as 
the solution to the following minmax problem: 

<rop, = min max        \\P(z(ßIJy<iy),ä)\\    .     (8) 
is.*) V|^|,|/J,ie[f,»] / 
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Figure 4: Optimal four-stage scheme obtained by opti- 
mizing over hi-hi frequency footprint of the modified Roe 
scheme with the preconditioner of Van Leer et al. [9]. 
M = 0.1, <t> = 0. (Topt = 0.0632, v = 2.108. 

This optimization problem is solved using the 
method of simulated annealing in conjunction with the 
downhill simplex algorithm of Neider and Mead [11, 12]. 

Simulated annealing has proved to be both powerful 
and robust and the algorithm does not require frequent 
restarts (unlike Powell's method, which was used in [1]). 

Figure 4 is an example of a scheme designed with the 
preconditioner of Van Leer et al. 

4.1    Flow angle dependence 

Any remaining flow-angle (<j>) dependence may also 
be removed by appropriate definition of the Courant num- 
ber v. As in [1, 8], for the preconditioned Euler equations, 
with the characteristic speeds equal to or close to q, we 
define the Courant number as 

At 
" = V*,Ay,*)' (9) 

where / is a typical cell-width that may depend on the 
flow direction. For rectangular cells we find that defining 

l = l/(\cos<j>\ + AK\sin<t>\) (10) 

takes away most of the variation of v with flow angle, so 
that a single value may be recommended. ([1] has this 
function defined incorrectly. The values of v in the tables 
in this reference need to be scaled by a factor of \/2 when 
using the above definition of /. [13] has updated tables). 

Figure 5 shows the variation in Courant number with 
length scale independent of flow angle for a typical multi- 
stage scheme. As can be seen from the figure, our choice 
of length scale provides a fairly good fit to the variations. 
This allows us to recommend a single value of v for each 
multi-stage scheme. 
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Figure 5: Variation with flow angle of multi-stage coeffi- 
cients and Courant number (based on a fixed length scale 
independent of flow angle) for a first-order 4-stage optimal 
scheme. Optimization over hi-hi frequency domain only. 
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Figure 6: Variation of multi-stage coefficients and Courant 
number with Mach number for a first-order 4-stage opti- 
mal scheme. Optimization over hi-hi frequency domain 
only. 

4.2    Dependence on Mach number 

The Mach number dependence of the multi-stage 
schemes derived in the previous section was related to lo- 
hi acoustic error modes that had symbols at some distance 
to the origin that vanish as \/l - A/2. The hi-hi frequency 
error-modes are fairly insensitive to Mach number, mak- 
ing it possible to design optimal multi-stage schemes with 
coefficients that are fairly insensitive to Mach number as 
well. Figure 6 shows the variation in the optimal multi- 
stage coefficients with Mach number. A slight change in 
the coefficients is observed while passing through the sonic 
point, but the change in values is small enough to allow 
us to recommend a single set of coefficients for each mul- 
tistage scheme that may be applied over the entire Mach 
number and flow-angle range. 

lows: 

Optimization     procedure 
Navier-Stokes Operators 

for 

For Navier-Stokes preconditioners the idea put forth 
in [14] is to make the size of the-footprint independent of 
cell-Reynolds number. This is achieved as follows. If we 
write the 2-D discretized Navier-Stokes equations as: 

U« = LBuV + (CUr)r + (DUr)y + (EUy) <y, (ID 

the first term on the right-hand side is the discrete Euler 
operator; the remaining terms are the viscous/conductive 
terms, assumed to be approximated by central differenc- 
ing. These contribute only to the extent of the footprint 
along the negative real axis, which is inversely propor- 
tional to the cell-Reynolds number. The proper scaling 
required to make the size of the footprint independent of 
cell-Reynolds number is obtained by choosing PNS as fol- 

P*s = P E» + A1C+ Ay E. (12) 

For higher-order upwind differencing, the same scaling 
technique for the highest frequency Fourier footprints 
yields a similar expression: 

P^5 = (1 - K)P 
2 2 

Eu + T-C + -^E- Eu     Ax Ay 
(13) 

This strategy works for cell-Reynolds numbers that are 
not too low, e.g. Re^x > 0.1. For very low Re&x a slight 
modification is needed in the continuity equation; this will 
be discussed elsewhere (cf. [15]). 

With the above Navier-Stokes preconditioning, we 
are able to design a family of multi-stage schemes that are 
dependent only on cell-Reynolds number. We would hope 
that as the cell-Reynolds number decreases, the time steps 
required for good damping increase, as the high-frequency 
content in the footprint begins to align itself along the 
negative real axis.   This, unfortunately, does not hap- 
pen if we make use of the above optimization procedure 
for a discrete, preconditioned Navier-Stokes operator with 
prescribed values of Mach number, flow angle and cell- 
Reynolds number.  The formulation described above at- 
tempts to maximize the damping over the domain, which 
results in extremely (unnecessarily) small functional (<7op<) 
values for the corresponding multi-stage schemes.   The 
stronger damping comes at a price - smaller Courant num- 
bers for these time-stepping schemes. This means taking 
smaller time-steps, thereby increasing the number of com- 
putational steps required to attain a converged solution. 
Since the cell length-scales used in computing these time- 
steps tend to be small (a common feature of high- Reynolds 
number computations), the larger the Courant number of 
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Figure 7: Four-stage scheme obtained by optimizing over Figure 8:  Optimal four-stage scheme obtained by opti- 
hi-hi frequency footprint of the discrete, preconditioned mizing over hi-hi frequency footprint of the discrete, pre- 
Navier-Stokes operator. <Tmm was prescribed as 0.1. M = conditioned Navier-Stokes operator.   M — 0.1, ^ = 0, 
0.1, <\> = 0, Re&r = 0.1, AH-1. v = 7.891. ÄcA* = 0.1, AH = 1. ffopt = 0.0034, v = 2.953. 

the scheme, the better. It is therefore obvious that a dif- 
ferent approach is necessary for Navier-Stokes operators. 

For Navier-Stokes operators, we have redefined the 
optimization problem as follows: For a given spatial oper- 
ator, find the largest Courant number with which the cor- 
responding multi-stage scheme has a prescribed damping 
capability. 

This may be written as: 

Solve <r(j/) = (Tmin (14) 

where a{v) is defined below: 

o~(i/) = mjn max 
,l0,l,l/3,ie[i, 

\\P{z{ßx,ßy,u),5) 

The solution to this problem is fairly simple. 
We make the assumption that <T(I/) is a continuous, 
monotonically-increasing function within our range of in- 
terest. (This seems to be a valid assumption from our 
experiments). We may then search for a root to equa- 
tion (14) using an algorithm such as the bisection method 
(cf. [11]) or the more complex algorithm due to Brent 
[12] which combines the sureness of the bisection method 
with the speed of a higher order method when appropri- 
ate. Each evaluation of c(u) requires a solution to the 
underlying optimization problem (which may be solved 
using simulated annealing as before). Care must there- 
fore be taken to ensure that an appropriate set of starting 
values of ä are used for each evaluation of o~{v). Another 
point of concern is the choice of <rmi„. Too large a value 
of <Tm,„ can result in a scheme that is unstable for fre- 
quency modes other than the "hi-hi" combinations being 
considered. Figure 9 is an example of such a scheme. 

Figure 7 is an example of a scheme designed using 
this procedure. In contrast, Figure 8 shows a scheme de- 
signed using the optimization procedure described earlier. 
As can be seen from the figures, the two schemes have dif- 
ferent damping properties. By prescribing the damping 
factor (Tmin to be 0.1, the new scheme's Courant number 
increases to 7.89 from 2.95 with the earlier formulation. 

This approach is not well suited for discretizations of 
the Euler operator. The increase in Courant number is 
marginal at best. Navier-Stokes footprints tend to align 
themselves along the real axis in the complex plane with 
decreasing cell-Reynolds number (as the behavior becomes 
increasingly parabolic). Increasing the Courant number 
causes the footprint to grow primarily in this direction 
for these operators. Euler footprints grow outward in all 
directions at the same rate, making it more difficult to 
obtain time-stepping schemes that damp all error-modes. 

One way of avoiding multi-stage coefficients that am- 
plify some error-modes, as in Figure 9, is by adding in a 
constraint to the formulation. An appropriate constraint 
would be 

*max — max 
I/5*I,I/M€[0,T1 

||P(z(/3r>/3y,^),3)||<l.       (15) 

This constrained-optimization problem (equations 
(14) and (15)) can be reformulated as an unconstrained- 
optimization problem by making use of a penalty function. 
We can write o~(v) as 

<r(i/)    =    min(       max       \\P(z(ßt,ßv,u),a)\\ 

+ 7(Pm<,x - I)2), (16) 

where 7 is a constant, 7 > 0. The larger 7 is, the more 
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Figure 9: Four-stage scheme obtained by optimizing over 
hi-hi frequency footprint of the discrete, preconditioned 
Navier-Stokes operator. <rm,„ was prescribed as 0.2. M = 
0.1, <* = 0, Re&x = 0.1, Aft = l.i/= 12.845. It is obvious 
that this scheme will be unstable for some "hi-lo", "lo-hi" 
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Figure 10: Four-stage scheme obtained by optimizing over 
hi-hi frequency footprint of the discrete, preconditioned 
Navier-Stokes operator with a constraint on Pmax intro- 
duced via a penalty function. The entire footprint is 
shown here. <rmin was prescribed as 0.2. M = 0.1, ^ = 0, 
ReAt = 0.1, Aft = 1. i/ = 11.3679. 

strongly is the constraint enforced. Taking too large a 
value of 7 however can affect the robustness of the opti- 
mization algorithm. We found that taking taking a mod- 
est value of 7 initially (around 100) and then recomputing 
the solution with this trial solution and j around 1 x 106 

worked well in enforcing the constraint. Figure 10 is an 
example of a solution obtained in this manner. We have 
obtained a stable scheme with only a modest decrease in 
Courant number. It is unclear however if this scheme 
will perform well in nonlinear implementations. Certain 
modes are likely to be excited if the time-step taken cor- 
responds to even a modest increase over the prescribed 
value. One option is to modify our constraint to allow for 
some variation in the Courant number without encounter- 
ing amplification factors greater than one for some wave- 
modes. This modified constraint could be written as 

»    = max 

1, 

(      max       ||P(z,c*)||) 

(17) 

where z = z(3z,ßy,i/). The optimization problem may 
be formulated as an unconstrained optimization problem 
as before. Figure 11 is an example of the solution to this 
problem with 6 = 0.2. These coefficients are likely to be 
more reliable in a multigrid formulation than the coeffi- 
cients derived earlier. 

Choosing a lower value for <rmxn, say around 0.12, for 
the case considered in Figure 11, would obviate the need 
for the constraint (eqn. 17) and its associated complica- 
tions. 

It is unclear what is the best choice for <Tmin in terms 

of obtaining the best possible multigrid convergence rates. 
This could likely be determined from multigrid studies in- 
volving preconditioned Navier-Stokes operators and var- 
ious test conditions. Multi-stage schemes with a = 0.2 
and more have worked well in our multigrid Euler studies 
(though we did not attempt to prescribe the magnitude 
of damping here). Similar multigrid studies remain to be 
undertaken with the preconditioned Navier-Stokes equa- 
tions. 

5.1    Multi-stage coefficients with prescribed damp- 
ing for Navier-Stokes operators 

When following this approach, it is unlikely that we 
would be able to recommend a single set of coefficients 
independent of Re&x and AR.. A likely compromise would 
be to generate curve-fits to account for the variations in 
coefficients due to each of these parameters. 

As a preliminary study we have obtained the coef- 
ficients for a four-stage time stepping scheme based on 
the Fourier footprint of the discrete, preconditioned first- 
order Navier-Stokes operator, discretized using the mod- 
ified Roe scheme for inviscid terms and central differenc- 
ing for the viscous terms. The variation in the coefficients 
with cell-Reynolds number was studied. Figure 12 shows 
these variations, normalized to the values of the coeffi- 
cients for the Euler operator. The figure indicates that 
the optimal Courant number increases sharply as the cell- 
Reynolds number decreases, while the multi-stage coeffi- 
cients decrease. It would seem that curve-fits in terms of 
log(flear) are feasible. 

6 
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Figure 11: Four-stage scheme obtained by optimizing over 
hi-hi frequency footprint of the discrete, preconditioned 
Navier-Stokes operator with a constraint on P^ax (eqn. 
17) introduced via a penalty function. The entire footprint 
is shown here. <7min was prescribed as 0.2. M — 0.1, 
<}> = 0, Re&x = 0.1, AH = 1. 6 = 0.2. u = 9.5361. 
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Figure 12: Variation with cell-Reynolds number of mul- 
tistage coefficients and Courant numver for a first order 
4-stage scheme with prescribed damping. Optimization 
based hi-hi frequency footprint of the discrete, precondi- 
tioned Navier-Stokes operator with a constraint on Pmat 

introduced via a penalty function. trmin was prescribed as 
0.15. M = 0.1, <t> = 0, AH = 1, 6 = 0.05. 

5.2    Optimal multi-stage schemes for the precon- 
ditioned Euler equations 

We have computed optimal multi-stage schemes 
based on the modified Roe discrete operator for the pre- 
conditioned Euler equations with the preconditioner of 
Van Leer et al. These coefficients are presented as ta- 
bles in [13, 8], and have been used to obtain the results 
in this paper. For completeness, a condensed version of 
these tables is presented here; see Tables 1-4. 

These schemes are not only preferable as solvers 
in a multigrid strategy, but are also superior single-grid 
schemes, as the preconditioning itself already acceler- 
ates the convergence to a steady solution and the high- 
frequency damping provides robustness. 

6    Multigrid Euler Solutions 
The preconditioner of Van Leer et al. has been shown 

to produce dramatic speed-ups for steady solutions to the 
problem of "flow past a semi-circular bump (t/c — 0.042) 
in a channel" [8]. The modified Roe scheme that is used 
here also provides more accurate solutions for cases with 
low freestream Mach number. Results of these runs are 
shown in Tables 5 and 6 in terms of equivalent work units. 
A work unit is the amount of work required to compute a 
single-stage update on the fine grid. These are the "best" 
single and multigrid results obtained from multiple runs 
using 2-6 (3-6 for second order) stages and 1-5 (1-4 for sec- 
ond order) grid levels. The second-order solutions made 
use of Van Albada's limiter and defect-correction multi- 
grid cycles for the multigrid cases. Figures 14, 15 and 16 

are examples of solutions obtained with this method. 
Tables 5 and 6 indicate that local and matrix time- 

stepping require similar amounts of work in the single-grid 
subsonic and transonic runs. This is probably an artifact 
of the problem. (This behavior is not observed when solv- 
ing for the flow in a semi-infinite channel). The reflective 
wall-boundary conditions in the channel provide minimal 
attenuation of acoustic error-modes and this effect dom- 
inates single-grid convergence. This is not a problem for 
the supersonic cases, which have a largely convective na- 
ture. The speed-up of multigrid with local precondition- 
ing over multigrid with local time-stepping is a lot more 
dramatic; the former is 3-4 times faster in all cases. Con- 
vergence in the subsonic and transonic cases is also an or- 
der of magnitude faster than in the corresponding single- 
grid cases. Local preconditioning performs admirably on 
a single-grid for the supersonic case, and there is not much 
improvement possible without modifying multigrid to bet- 
ter handle convection-dominated flow. 

A semi-coarsened multigrid cycle is more expensive 
than a regular multigrid cycle (a factor of three on aver- 
age for the cases considered - this factor depends on the 
number of grid levels and number of stages chosen). Each 
semi-coarsened multigrid cycle is able to reduce the resid- 
ual norm by a larger factor than a corresponding regular 
multigrid cycle. However, some of the extra overhead that 
is inherent in the method does show up in the work re- 
quired to obtain the same solution with the same number 
of grid levels and stages in the time-stepping scheme. Ta- 
bles 5 and 7 refect the difference in work required. It 
should be pointed out though that the semi-coarsened 
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Figure 13: Residual history plots for the transonic test 
case considered above (M = 0.85). 64x32 grid. All runs 
were made with four-stage time-stepping schemes and all 
multigrid runs made with four levels (8x4 as coarsest grid). 

multigrid method makes up for the extra work required in 
the form of increased robustness. Residual history plots 
indicate that the convergence rate with regular multigrid 
can be erratic, especially in the transonic regime, whereas 
it is essentially constant with semi-coarsening (see Fig- 
ure 13). Also, in our calculations, regular multigrid ex- 
hibited extremely poor convergence rates (especially with 
local-timestepping) when attempting to obtain a second- 
order spatially accurate solution to the transonic case 
(M = 0.85). 

6.1     Improving robustness 

The preconditioner of Van Leer et al. is known to be 
lacking in robustness about sonic and stagnation points. 
The stagnation-point singularity appears to be quite a dif- 
ficult problem to correct and there has been substantial 
research in this area (cf. [16, 17]). 

The sonic-point singularity may be overcome more 
easily. The scaling parameter 0 = y/\l - M2\ is present 
in the denominator of some terms in the preconditioner 
of Van Leer et al. as well as in the denominator of certain 
terms in the modified Roe flux function. These become 
unbounded as M — 1, at which point 0 — 0. 

One obvious fix is to bound 0 away from zero by 
some artificial means, such as a smoothing function. 

We opted to fit a parabolic curve to 0 such that the 
fit matched the curve \/l - M2 for a given value of M in 
both value and slope. The point of intersection with the 
other branch, \/M2 - 1, was also required to match in 
slope. Since only three conditions can be specified for this 
curve-fit, we opted not to specify the point of intersection 
with the curve \fM2 - 1 (cf. [13]). 

With this approach and in conjunction with explicit 

Figure 14: Mach number contours. Subsonic flow past 
a bump in a channel. Modified Roe scheme with the 
preconditioner of Van Leer et al. K = 0 variable ex- 
trapolation. 128x64 grid. Solution obtained with semi- 
coarsened multigrid incorporating an optimal four-stage 
scheme. M = 0.05, t/c = 0.042. 

t/e = 0.042, modified Roe scheme with * = 0. 

Figure 15: Mach number contours. Transonic flow past a 
bump in a channel. Modified Roe scheme with the pre- 
conditioner of Van Leer et al. K = 0 variable extrapo- 
lation with Van Albada's limiter. 128x64 grid. Solution 
obtained with semi-coarsened multigrid incorporating an 
optimal four-stage scheme. M = 0.85, t/c = 0.042. 

t/c = 0 042, modified Roe scheme with K = 0. 

-1.0 

Figure 16: Mach number contours. Supersonic flow past 
a bump in a channel. Modified Roe scheme with the pre- 
conditioner of Van Leer et al. K = 0 variable extrapo- 
lation with Van Albada's limiter. 128x64 grid. Solution 
obtained with semi-coarsened multigrid incorporating an 
optimal four-stage scheme. M = 1.4, t/c = 0.042. 
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Number of Stag« » Number of Stages 

2 3 4 5 6 2 3 4 5 6 

<*1 0.3333 0.1467 0.08125 0.05204 0.03712 <*i 0.6826 0.2695 0.1572 0.1085 0.07727 

a2 1 0.3979 0.2033 0.1240 0.08516 a7 1 0.6351 0.3350 0.2180 0.1537 

<*3 1 0.4226 0.2343 0.1521 «3 1 0.6079 0.3581 0.2428 

a4 1 0.4381 0.2566 «4 1 0.5887 0.3650 

«5 1 0.4525 <*5 1 0.5729 

<*6 1 ar6 1 

v 1.0000 1.5252 2.1058 2.6824 3.0827 V 0.7167 1.1704 1.5694 1.9924 2.4407 

""opt 0.3333 0.1418 0.06328 0.03024 0.01627 Copt 0.6677 0.4454 0.3171 0.2336 0.1686 

Table 1: Optimal multi-stage coefficients for first-order 
scheme. Optimization based on hi-hi high frequency do- 
main. 

Table 4: Optimal multi-stage coefficients for K = 1/3 
scheme. Optimization based on hi-hi high frequency do- 
main. 

Number of Stages t/e = 0.042, modified Roe scheme with * = 0 and explict RS. 

2 3 4 5 6 

<*1 0.5713 0.2239 0.1299 0.08699 0.06134 

a2 1 0.5653 0.2940 0.1892 0.1322 

C*3 1 0.5604 0.3263 0.2201 

»4 1 0.5558 0.3425 

»5 1 0.5531 

«6 1 

V 0.6305 1.0458 1.4008 1.7471 2.0701 

<Topt 0.6475 0.4279 0.2927 0.2047 0.1464 

Fmin 0.638 
Ftt   0.640 
Fine 0.030 
Frnax 1.404 

Table 2: Optimal multi-stage coefficients for K = 0 
scheme. Optimization based on hi-hi high frequency do- 
main. 

Number of Stages 

2 3 4 5 6 

Ql 0.4450 0.1780 0.09900 0.06431 0.04540 

a2 1 0.4774 0.2434 0.1509 0.1044 

Q3 1 0.4913 0.2783 0.1846 

a4 1 0.5004 0.3030 

»5 1 0.5116 

16 1 

1/ 0.4386 0.7439 1.0139 1.2608 1.4613 

<y0pt 06154 0.3916 0.2526 0.1654 0.1145 

Table 3: Optimal multi-stage coefficients for K = -1 
scheme. Optimization based on hi-hi high frequency do- 
main. 

Figure 17: Mach number contours. Flow past a non- 
smooth bump in a channel. M = 1.0, t/c = 0.042, 
128 x 64 grid, K = 0 variable extrapolation with modified 
Roe scheme and Van Albada's limiter. Explicit residual- 
smoothing was used to obtain this solution. 

residual smoothing, we were able to obtain a solution to 
the channel problem with a freestream Mach number M = 
1. Figure 17 shows this solution. 

7 Multigrid for Navier-Stokes Op- 
erators 
Just as for Euler discretizations, the multi-stage 

schemes described above for discrete Navier-Stokes oper- 
ators should be an ideal choice as the basic relaxation 
scheme in a semi-coarsened multigrid strategy. Multigrid 
applications of the optimized multi-stage schemes will be 
presented in [15]. 

8 Conclusions 
We have demonstrated that the combination of local 

preconditioning and multi-stage time-stepping can pro- 
duce relaxation schemes that boast guaranteed, strong 



M = = 0.35 M = 0.85 M ■ = 1.4 

Local TS Matrix TS Local TS Matrix TS Local TS Matrix TS 

Single 2940 2520 4140 4920 1550 355 

Multigrid 1123 268 911 326 651 234 

Table 5: Comparison of first-order convergence rates for flow past a semi-circular bump in a channel, 64x32 grid. 
Work units required to reduce the norm of the residual by five orders of magnitude. (Local TS = local time-stepping, 
Matrix TS = local preconditioning). Semi-coarsened multigrid. 

A/ = = 0.35 M - = 0.85 M = = 1.4 

Local TS Matrix TS Local TS Matrix TS Local TS Matrix TS 

Single 3685 2380 5305 9600 1344 414 

Multigrid 582 191 515 167 722 309 

Table 6: Comparison of second-order (« = 0) convergence rates for flow past a semi-circular bump in a channel, 64x32 
grid. Work units required to reduce ||r£||t (cf. [7]) to 10-2 for M = 0.35 and M = 1.4 and to 5 x 10"2 for M = 0.85. 
Nested iteration with 5 defect-correction sweeps on each coarse grid level was used initially to improve robustness for 
multigrid solutions. Semi-coarsened multigrid. 

M = = 0.35 M = = 0.85 M ■■ = 1.4 

Local TS Matrix TS Local TS Matrix TS Local TS Matrix TS 

Single 2940 2130 4140 4150 1550 288 

Multigrid 892 165 752 174 514 161 

Table 7-  Comparison of first-order convergence rates for flow past a semi-circular bump in a channel, 64x32 grid 
Work units required to reduce the norm of the residual by five orders of magnitude. Regular multigrid. 

10 



high frequency damping for the entire range of flow angles, 
Mach numbers and cell-Reynolds numbers. Such schemes 
are ideally suited for use as single-grid relaxation schemes 
in a multigrid relaxation framework, particularly if semi- 
coarsening is used. 

Some numerical results are presented to support this 
claim; more multigrid experimenting is needed to deter- 
mine the best balance between parameters such as damp- 
ing rate and time-step value. 
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